
NONSEPARABLE DYNAMIC NEAREST NEIGHBOR GAUSSIAN 
PROCESS MODELS FOR LARGE SPATIO-TEMPORAL DATA 
WITH AN APPLICATION TO PARTICULATE MATTER ANALYSIS

ABHIRUP DATTA*, SUDIPTO BANERJEE1,†, ANDREW O. FINLEY‡,2, NICHOLAS A. S. 
HAMM§, and MARTIJN SCHAAP¶

*Johns Hopkins University

†University of California, Los Angeles

‡Michigan State University

§University of Twente

¶TNO

Abstract

Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental 

to human health. Regulatory efforts aimed at curbing PM levels in different countries often require 

high resolution space–time maps that can identify red-flag regions exceeding statutory 

concentration limits. Continuous spatio-temporal Gaussian Process (GP) models can deliver maps 

depicting predicted PM levels and quantify predictive uncertainty. However, GP-based approaches 

are usually thwarted by computational challenges posed by large datasets. We construct a novel 

class of scalable Dynamic Nearest Neighbor Gaussian Process (DNNGP) models that can provide 

a sparse approximation to any spatio-temporal GP (e.g., with nonseparable covariance structures). 

The DNNGP we develop here can be used as a sparsity-inducing prior for spatio-temporal random 

effects in any Bayesian hierarchical model to deliver full posterior inference. Storage and memory 

requirements for a DNNGP model are linear in the size of the dataset, thereby delivering massive 

scalability without sacrificing inferential richness. Extensive numerical studies reveal that the 

DNNGP provides substantially superior approximations to the underlying process than low-rank 
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approximations. Finally, we use the DNNGP to analyze a massive air quality dataset to 

substantially improve predictions of PM levels across Europe in conjunction with the LOTOS-

EUROS chemistry transport models (CTMs).

keywords and phrases

Nonseparable spatio-temporal models; scalable Gaussian process; nearest neighbors; Bayesian 
inference; Markov chain Monte Carlo; environmental pollutants

1. Introduction

Recent years have witnessed considerable growth in statistical modeling of large spatio-

temporal datasets; see, for example, the recent books by Cressie and Wikle (2011), Gelfand 

et al. (2010) and Banerjee, Carlin and Gelfand (2014) and the references therein for a variety 

of methods and applications. An especially important domain of application for such models 

is environmental public health, where analysts and researchers seek map projections for 

ambient air pollutants measured at monitoring stations and understand the temporal variation 

in such maps. When inference is sought at the same scale as the observed data, one popular 

approach is to model the measurements as a time series of spatial processes. This approach 

encompasses standard time series models with spatial covariance structures [Pfeifer and 

Deutsch (1980a, 1980b), Stoffer (1986)] and dynamic models [Gelfand, Banerjee and 

Gamerman (2005), Stroud, Müller and Sansó (2001)], among numerous other alternatives.

On the other hand, when inference is sought at arbitrary scales, possibly finer than the 

observed data (e.g., interpolation over the entire spatial and temporal domains), one 

constructs stochastic process models to capture dependence using spatio-temporal 

covariance functions [see, e.g., Allcroft and Glasbey (2003), Cressie and Huang (1999), 

Gneiting (2002), Gneiting, Genton and Guttorp (2007), Kyriakidis and Journel (1999), Stein 

(2005)]. In modeling ambient air pollution data, it is now customary to meld observed 

measurements with physical model outputs, where the latter can operate at much finer 

scales. Inference, therefore, is increasingly being sought at arbitrary resolutions using spatio-

temporal process models [see, e.g., Gneiting and Guttorp (2010)]. Henceforth, we focus 

upon this setting.

While the richness and flexibility of spatio-temporal process models are indisputable, their 

computational feasibility and implementation pose major challenges for large datasets. 

Model-based inference usually involves the inverse and determinant of an n×n spatio-

temporal covariance matrix C(θ), where n is the number of space–time coordinates at which 

the data have been observed. When C(θ) has no exploitable structure, matrix computations 

typically require ~n3 floating point operations (flops) and storage in the order of n2 which 

becomes prohibitive if n is large. Approaches for modeling large covariance matrices in 

purely spatial settings include low-rank models [see, e.g., Banerjee et al. (2008), 

Crainiceanu, Diggle and Rowlingson (2008), Cressie and Johannesson (2008), Finley, 

3http://acm.eionet.europa.eu/databases/airbase (accessed 26 September 2014).
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Banerjee and McRoberts (2009), Higdon (2001), Kammann and Wand (2003), Katzfuss 

(2016), Rasmussen and Williams (2005), Stein (2007, 2008)], covariance tapering [see, e.g., 

Bevilacqua et al. (2015), Du, Zhang and Mandrekar (2009), Furrer, Genton and Nychka 

(2006), Kaufman, Schervish and Nychka (2008), Shaby and Ruppert (2012)], 

approximations using Gaussian Markov Random Fields (GMRF) [see, e.g., Rue and Held 

(2005)], products of lower dimensional conditional densities [Datta et al. (2016a), Stein, Chi 

and Welty (2004), Vecchia (1988, 1992)] and composite likelihoods [e.g., Eidsvik et al. 

(2014)]. Extensions to spatio-temporal settings include Cressie, Shi and Kang (2010), 

Finley, Banerjee and Gelfand (2012) and Katzfuss and Cressie (2012) who extend low-rank 

spatial processes to dynamic spatio-temporal settings, while Xu, Liang and Genton (2014) 

opt for a GMRF approach. All these methods use dynamic models defined on fixed temporal 

lags and do not lend themselves easily to continuous spatio-temporal domains.

Spatio-temporal process models for continuous space–time modeling of large datasets have 

received relatively scant attention. Bai, Song and Raghunathan (2012) and Bevilacqua et al. 

(2012) used composite likelihoods for parameter estimation in a continuous space–time 

setup. Both these approaches, like their spatial analogues, have focused upon constructing 

computationally attractive likelihood approximations and have restricted inference only to 

parameter estimation. Uncertainty estimates are usually based on asymptotic results which 

are usually inappropriate for irregularly observed datasets. Moreover, prediction at arbitrary 

locations and time points proceeds by imputing estimates into an interpolator derived from a 

different process model. This remains expensive for large n and may not reflect predictive 

uncertainty accurately.

Our current work offers a highly scalable spatio-temporal process for continuous space–time 

modeling. We expand upon the neighbor-based conditioning set approaches outlined in 

purely spatial contexts by Stein, Chi and Welty (2004), Vecchia (1988) and Datta et al. 

(2016a). We derive a scalable version of a spatio-temporal process, which we call the 

Dynamic Nearest Neighbor Gaussian Process (DNNGP), using information from smaller 

sets of neighbors over space and time. This approach offers several benefits. The DNNGP is 

a well-defined spatio-temporal process whose realizations follow Gaussian distributions with 

sparse precision matrices. Thus, the DNNGP can act as a sparsity-inducing prior for spatio-

temporal random effects in any Bayesian hierarchical model and enables full posterior 

inference, considerably enhancing its applicability. Moreover, it can be used with any spatio-

temporal covariance function, thereby accommodating nonseparability. Being a process, 

importantly, allows the DNNGP to provide inference at arbitrary resolutions and, in 

particular, enables predictions at new spatial locations and time points in posterior predictive 

fashion. The DNNGP also delivers a substantially superior approximation to the underlying 

process than, for example, by low-rank approximations [see, e.g., Stein (2014), for problems 

with low-rank approximations]. Finally, storage and memory requirements for a DNNGP 

model are linear in the number of observations, so it efficiently scales up to massive datasets 

without sacrificing richness and flexibility in modeling and inference.

The remainder of the article is organized as follows. In Section 2 we present the details of a 

massive environmental pollutants dataset and the need for a full Bayesian analysis. Section 3 

elucidates a general framework for building scalable spatio-temporal processes and uses it to 
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construct a sparsity-inducing DNNGP over a spatio-temporal domain. Section 4 describes 

efficient schemes for fixed as well as adaptive neighbor selection, which are used in the 

DNNGP. Section 5 details a Bayesian hierarchical model with a DNNGP prior and its 

implementation using Markov chain Monte Carlo (MCMC) algorithms. Section 6 illustrates 

the performance of DNNGP using simulated datasets. In Section 7 we present a detailed 

analysis of our environmental pollutants dataset. We conclude the manuscript in Section 8 

with a brief review and pointers to future research.

2. PM10 pollution analysis

Exposure to airborne particulate matter (PM) is known to increase human morbidity and 

mortality [Brunekreef and Holgate (2002), Hoek et al. (2013), Loomis et al. (2013)]. In 

response to these and other health impact studies, regulatory agencies have introduced 

policies to monitor and regulate PM concentrations. For example, the European 

Commission’s air quality standards limit PM10 (PM < 10 μm in diameter) concentrations to 

an average of 50 μg m−3 over 24 hours and of 40 μg m−3 over a year [European Commission 

(2015)]. Measurements made with standard instruments are considered authoritative, but 

these observations are sparse and maps at finer scales are needed for monitoring progress 

with mitigation strategies and for monitoring compliance. Hence, accurately quantifying 

uncertainty in predicted PM concentrations is critical.

Substantial work has been aimed at developing regional scale chemistry transport models 

(CTM) for use in generating such maps. CTM’s, however, have been shown to 

systematically underestimate observed PM10 concentrations due to lack of information and 

understanding about emissions and formation pathways [Stern et al. (2008)]. Empirical 

regression [Brauer et al. (2011)] or geostatistical models [Lloyd and Atkinson (2004)] are an 

alternative to CTM’s for predicting continuous surfaces of PM10. Empirical models may 

give accurate results, but are restricted to the conditions under which they are developed 

[Manders, Schaap and Hoogerbrugge (2009)]. Assimilating monitoring station observations 

and CTM output, with appropriate bias adjustments, has been shown to provide 

improvements over using either data source alone [Candiani et al. (2013), Denby et al. 

(2008), Hamm et al. (2015), van de Kassteele and Stein (2006)]. In such settings, the CTM 

output enters as a model covariate and the measured station observations are the response. In 

addition to delivering more informed and realistic maps, analyses conducted using the 

models detailed in Section 5 can provide estimates of spatial and temporal dependence not 

accounted for by the CTM, and hence provide insights useful for improving the transport 

models.

We focus on the development and illustration of continuous space–time process models 

capable of delivering predictive maps and forecasts for PM10 and similar pollutants using 

sparse monitoring networks and CTM output. We coupled observed PM10 measurements 

across central Europe with corresponding output from the LOTOS-EUROS [Schaap et al. 

(2008)] CTM. Inferential objectives included (i) delivering continuous maps of PM10 with 

associated uncertainty, (ii) producing statistically valid forecast maps given CTM 

projections, and (iii) developing inference on space and time residual structure, that is, space 

and time lags, that can help identify lurking processes missing in the CTM. The study area 
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and dataset are the same as those used by Hamm et al. (2015) and the reader is referred to 

that paper for more background information. Note that the current paper works with a 2-year 

time series, whereas Hamm et al. (2015) focused on daily analysis of a limited number of 

pollution events.

2.1. Study area

The study domain comprises mainland European countries with a substantial number of 

available PM10 observations. The countries included were Portugal, Spain, Italy, France, 

Switzerland, Belgium, The Netherlands, Germany, Denmark, Austria, Poland, The Czech 

Republic, Slovakia and Slovenia. All data were projected to the European Terrestrial 

Reference System 1989 (ETRS) Lambert Azimuthal Equal-Area (LAEA) projection which 

gives a coordinate reference system for the whole of Europe.

2.2. Observed measurements

Air quality observations for the study area were drawn from the Airbase (Air quality data 

base).3 Daily PM10 concentrations were extracted for January 1 2008 through December 30 

2009 resulting in a maximum of M = 730 observations at each of N = 308 monitoring 

stations. Airbase daily values are averaged over the within-day hourly values when at least 

18 hourly measurements are available, otherwise no data are provided. Airbase monitors are 

classified by type of area (rural, urban, suburban) and by type (background, industrial, traffic 

or unknown). Only rural background monitors were used in our study. This is common for 

comparing measured observations to coarse resolution CTM simulations [Denby et al. 

(2008)]. Monitoring stations above 800 m altitude were also excluded. These tend to be 

located in areas of variable topography and the accuracy of the CTM for locations that shift 

from inside to outside the atmospheric mixing layer is known to be poor. No further quality 

control was performed on the data. The locations of the 308 stations used in the subsequent 

analysis are shown in Figure 1 with associated observed and missing PM10 for two example 

dates. Of the 224,840 (M × N) potential observations across 730 day time series and 308 

stations, 41,761 observations were missing due to sensor failure or removal, and post-

processing removal by Airbase. These missing values were predicted using the proposed 

models.

2.3. LOTOS-EUROS CTM data

LOTOS-EUROS (v1.8) is a 3D CTM that simulates air pollution in the lower troposphere. 

The simulator’s geographic projection is longitude–latitude at a resolution of 0.50° longitude 

× 0.25° latitude (approximately 25 km × 25 km). LOTOS-EUROS simulates the evolution of 

the components of particulate matter separately. Hence, this CTM incorporates the 

dispersion, formation and removal of sulfate, nitrate, ammonium, sea salt, dust, primary 

organic and elemental carbon and nonspecified primary material, although it does not 

incorporate secondary organic aerosol. Hendriks et al. (2013) provide a detailed description 

of LOTOS-EUROS.

The hour-by-hour calculations of European air quality in 2008–2009 were driven by the 

European Centre for Medium Range Weather Forecasting (ECMWF). Emissions were taken 

from the MACC (Monitoring Atmospheric Composition and Climate) emissions database 
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[Pouliot et al. (2012)]. Boundary conditions were taken from the global MACC service 

[Flemming et al. (2009)]. The LOTOS-EUROS hourly model output was averaged to daily 

mean PM10 concentrations. LOTOS-EUROS grid cells that were spatially coincident with 

the Airbase observations were extracted and used as the covariate in the subsequent model.

CTM grid cell values nearest to station locations were used for subsequent model 

development. No attempt was made to match the spatial support (resolution) of the CTM 

simulations and station observations. The support of the CTM is 25 km, but the support of 

the observations is vague. Rural background observations were deliberately chosen because 

they are distant from urban areas and pollution sources. They are, therefore, considered 

representative of background, ambient pollution conditions and appropriate for matching 

with moderate resolution CTM-output [Denby et al. (2008), Hamm et al. (2015)]. This 

assumption is further backed up by empirical studies indicating that PM10 concentrations are 

dominated by rural background values even in urban areas [Eeftens et al. (2012)].

3. Scalable dynamic nearest neighbor Gaussian processes

Let {w(ℓ) : ℓ ∈ ℒ} be a zero-centered continuous spatio-temporal process [see, e.g., Gneiting 

and Guttorp (2010), for details], where ℒ =  ×  with  ⊂ ℜd (usually d = 2 or 3) is the 

spatial region,  ⊂ [0,∞) is the time domain and ℓ = (s, t) is a space–time coordinate with 

spatial location s ∈  and time point t ∈ . Such processes are specified with a spatio-

temporal covariance function Cov{w(ℓi ),w(ℓj )} = C(ℓi, ℓj |θ). For any finite collection  = {ℓ1, 
ℓ2, … , ℓn} in ℒ, let w  = (w(ℓ1)),w(ℓ2), … ,w(ℓn))′ be the realizations of the process over . 

Also, for two finite sets  and  containing n and m points in ℒ, respectively, we define the 

n×m matrix C , (θ) = Cov(w ,w |θ), where the covariances are evaluated using C(·, ·|θ). 

When  or  contains a single point, C ,  is a row or column vector. A valid spatio-

temporal covariance function ensures that C ,  (θ) is positive definite for any finite set . 

In particular, for spatio-temporal Gaussian processes, w  has a multivariate normal 

distribution N(0,C , (θ)) and the (i, j )th element of C , (θ) is C(ℓi, ℓj|θ).

Storage and computations involving C , (θ) can become impractical when n is large 

relative to the resources available. For full Bayesian inference on a continuous domain, we 

seek a scalable (in terms of flops and storage) spatio-temporal Gaussian process that will 

provide an excellent approximation to a full spatio-temporal process with any specified 

covariance function. We outline a general framework that first uses a set of points in ℒ to 

construct a computationally efficient approximation for the random field and extends the 

finite-dimensional distribution over this set to a process. To ease the notation, we will 

suppress the explicit dependence of matrices and vectors on θ whenever the context is clear.

Let ℛ = {ℓ1
∗, ℓ2

∗, …, ℓr
∗} be a fixed finite set of r points in ℒ. We refer to ℛ as a reference 

set. We construct a spatio-temporal process w(ℓ) on ℒ by first specifying 

wℛ = (w(ℓ1
∗), w(ℓ2

∗), …, w(ℓr
∗))′ N(0, K(θ)), where K(θ) is any r × r positive-definite matrix 

and then defining
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w(ℓ) = ∑
i = 1

r
ai(ℓ)w(ℓi

∗) + η(ℓ) for any ℓ ∉ ℛ, (3.1)

where η(ℓ) is a zero-centered Gaussian process independent of wℛ and such that Cov{η(ℓi ), 
η(ℓj)} = 0 for any two distinct points in ℒ.

Observe that w(ℓ) in (3.1) is a well-defined spatio-temporal Gaussian process on ℒ for any 
choice of ai(ℓ)’s, as long as K(θ) is positive definite. For example, w(ℓ) is a Gaussian process 

with covariance function C(·, ·|θ) if we set K(θ) = Cℛ,ℛ(θ), a(ℓ) = Cℛ, ℛ
−1 Cℛ, ℓ, where a(ℓ) is 

r × 1 with elements ai(ℓ), and η(ℓ) ∼ind N(0, C(ℓ, ℓ ∣ θ) − Cℓ, ℛCℛ, ℛ
−1 Cℛ, ℓ). Now (3.1) 

represents the “kriging” equation for a location ℓ based on observations over ℛ [Cressie and 

Wikle (2011)]. Dimension reduction can be achieved with suitable choices for K(θ) and a(ℓ). 
Low-rank spatio-temporal processes emerge when we choose ℛ to be a smaller set of 

“knots” (or “centers”). Additionally, specifying η(ℓ) to be a diagonal or sparse residual 

process yields w(ℓ) to be a nondegenerate (or bias-adjusted) low-rank Gaussian Process 

[Banerjee et al. (2008), Finley, Banerjee and McRoberts (2009), Sang and Huang (2012)].

Because of demonstrably impaired inferential performance of low-rank models in purely 

spatial contexts at scales similar to ours [see, e.g., Datta et al. (2016a), Stein (2014)], we use 

the framework in (3.1) to construct a class of sparse spatio-temporal process models. To be 

specific, let the reference set ℛ be an enumeration of r =MN points in ℒ so that each ℓi
∗ in 

ℛ corresponds to some (sj, tk) for j = 1, 2, … , N and k = 1, 2, … , M. For any ℓi
∗ = (s j, tk) in 

ℛ, we define a history set H(ℓi
∗) as the collection of all locations observed at times before tk 

and of all points at time tk with spatial locations in {s1, s2, … , sj−1}. Thus, 

H(ℓi
∗) = {(sp, tq) ∣ p = 1, 2, …, N, q = 1, 2, …, (k − 1)} ∪ {(sp, tk) ∣ p = 1, 2, …, ( j − 1)}. For any 

location ℓi
∗ in ℛ, let N(ℓi

∗) be a subset of the history set H(ℓi
∗). Also, for any location ℓ ∉ ℛ, 

let N(ℓ) denote any finite subset of ℛ. We refer to the sets N(ℓ) as a “neighbor set” for the 

location ℓ and describe their construction later.

We now turn to our choices for K(θ) and a(ℓ) in (3.1). Let w(ℓ)~ GP(0,C(·, ·|θ)). We choose 

K(θ) to effectuate a sparse approximation for the joint density of the realizations of w(ℓ) over 

ℛ, that is, N(wℛ|0,Cℛ,ℛ (θ)). Adapting the ideas underlying likelihood approximations in 

Vecchia (1988) and Datta et al. (2016a), we specify K(θ) to be the r ×r matrix such that

N wℛ ∣ 0, Cℛ, ℛ(θ) = ∏
i = 1

r
p w(ℓi

∗) ∣ w
H(ℓi

∗)

≈ ∏
i = 1

r
p w(ℓi

∗) ∣ w
N(ℓi

∗)
= N wℛ ∣ 0, K(θ) .

(3.2)

DATTA et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2018 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, H(ℓ1
∗) is the empty set [hence, so is N(ℓ1

∗) ] and 

p(w(ℓ1
∗) ∣ w

H(ℓ1
∗)

) = p(w(ℓ1
∗) ∣ w

N(ℓ1
∗)

) = p(w(ℓ1
∗)). The underlying idea behind the 

approximation in equation (3.2) is to compress the conditioning sets from H(ℓi
∗) to N(ℓi

∗) so 

that the resulting approximation is a multivariate normal distribution with a sparse precision 

matrix K−1. This implies

E[w(ℓi
∗) ∣ wH

ℓi
∗
] = E[w(ℓi

∗) ∣ w
N(ℓi

∗)
] = a

N(ℓi
∗)

′ w
N(ℓi

∗)
, (3.3)

where a
N(ℓi

∗)
= C

N(ℓi
∗), N(ℓi

∗)
−1 C

N(ℓi
∗), ℓi

∗. Also, K is determined by Cℛ,ℛ because K−1 = V′F

−1V, where F is a diagonal matrix with diagonal entries 

f
ℓi

∗ = Var(w(ℓi
∗) ∣ w

N(ℓi
∗)

) = C(ℓi
∗, ℓi

∗ ∣ θ) − C
ℓi

∗, N(ℓi
∗)

C
N(ℓi

∗), N(ℓi
∗)

−1 C
N(ℓi

∗), ℓi
∗ and V is the r ×r 

matrix with entries vi,j such that vi,i = 1 and vi,j = 0 whenever ℓi
∗ ∉ N(ℓ j

∗). The remaining 

entries in column j of V are specified by setting the subvector V
c(ℓ j

∗), j
= − a

N(ℓ j
∗)

, where 

c(ℓ j
∗) = {i ∣ ℓi

∗ ∈ N(ℓ j
∗)}. If m(≪ r) denotes the limiting size of the neighbor sets N(ℓ), then the 

columns of V are sparse with at most m+1 nonzero elements. Consequently, K−1 has at most 

O(rm2) nonzero elements [this is the spatial-temporal analogue of the result in Datta et al. 

(2016a)]. Hence, the approximation in (3.2) produces a sparsity-inducing proper prior 

distribution for the spatio-temporal random effects over ℛ that closely approximates the 

realizations from a GP(0,C(·, ·|θ)).

Turning to the vector of coefficients a(ℓ) in (3.1), we extend the idea in (3.3) to any point ℓ ∉ 
ℛ by requiring that E[w(ℓ)|wℛ] = E[w(ℓ)|wN(ℓ)]. This is achieved by setting ai(ℓ) = 0 in (3.1) 

whenever ℓi
∗ ∉ N(ℓ) for any point ℓ ∉ ℛ. Hence, if N(ℓ) contains m points, then at most m of 

the elements in the r × 1 vector a(ℓ) can be nonzero. These nonzero entries are determined 

from the above conditional expectation given N(ℓ). To be precise, if aN(ℓ) is the m × 1 vector 

of these m entries, then we solve CN(ℓ),N(ℓ)aN(ℓ) = CN(ℓ),ℓ for aN(ℓ). Also note that 

a′(ℓ)wℛ = aN(ℓ)′ wN(ℓ). Finally, to complete the process specifications in (3.1), we specify 

η(ℓ) ∼ind N(0, f ℓ), where f ℓ = Var(w(ℓ) ∣ wN(ℓ)) = C(ℓ, ℓ ∣ θ) − Cℓ, N(ℓ)CN(ℓ), N(ℓ)
−1 CN(ℓ), ℓ. The 

covariance function C̃ (·, ·|θ) of the resulting Gaussian Process is given by

C
∼(ℓi, ℓ j ∣ θ) =

K p, q, if ℓi = ℓp
∗ and ℓ j = ℓq

∗ are both in ℛ,

a′(ℓi)K ∗ q, if ℓi ∉ ℛ and ℓ j = ℓq
∗ ∈ ℛ,

a′(ℓi)Ka(ℓ j) + I (ℓi = ℓ j) f ℓi
, if ℓi ∉ ℛ and ℓ j ∉ ℛ,

(3.4)
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where Kp,q is element (p, q) and K*q is column q in K.

Owing to the sparsity of K−1, the likelihood N(wℛ|0,K) can be evaluated using O(rm3) flops 

for any given θ. Substantial computational savings accrue because m is usually very small 

(also see later sections). Furthermore, as η(ℓ) yields a diagonal covariance matrix and a(ℓ) has 

at most m nonzero elements, for any finite set  outside ℛ, the flop count for computing the 

density p(w |wℛ, θ) will be linear in the size of . We have now constructed a scalable 

spatio-temporal Gaussian Process from a parent spatio-temporal GP(0,C(·, ·|θ)) using small 

neighbor sets N(ℓ). We denote this Dynamic Nearest Neighbor Gaussian Process (DNNGP) 

as DNNGP(0,C̃(·, ·|θ)), where C ̃(·, ·|θ)) denotes the covariance function of this new GP.

4. Constructing neighbor sets

4.1. Simple neighbor selection

Spatial correlation functions usually decay with increasing inter-site distance. So the set of 

nearest neighbors based on the inter-site distances represents locations exhibiting highest 

correlation with the given location. This has motivated use of nearest neighbors to construct 

these small neighbor sets [Datta et al. (2016a), Vecchia (1988)]. On the other hand, spatio-

temporal covariances between two points typically depend on the spatial as well as the 

temporal lag between the points. To be specific, nonseparable isotropic spatio-temporal 

covariance functions can be written as C((s1, t1), (s2, t2)|θ) = C(h, u|θ), where h = ||s1 − s2|| 

and u = |t1 − t2|. This often precludes defining any universal distance function d : (  × )2 

→ℝ+ such that C((s1, t1), (s2, t2)|θ) will be monotonic with respect to d((s1, t1), (s2, t2)) for 

all choices of θ.

In light of the above discussion, we define “nearest neighbors” in a spatio-temporal domain 

using the spatio-temporal covariance function itself as a proxy for distance. To elucidate, for 

any three points (s1, t1), (s2, t2) and (s3, t3), we say that (s1, t1) is nearer to (s2, t2) than to (s3, 

t3) if C((s1, t1), (s2, t2)|θ) > C((s1, t1), (s3, t3)|θ). Subsequently, this definition of “distance” 

is used to find m nearest neighbors for any location.

Of course, this choice of nearest neighbors depends on the choice of the covariance function 

C and θ. Since the purpose of the DNNGP is to provide a scalable approximation of the 

parent GP, we always choose C(·, ·|θ) to be the same as the covariance function of the parent 

GP. However, for every location (si, tj), its neighbor set, denoted by Nθ (si, tj), still depends 

on θ. This is illustrated in Figures 2(a) and 2(b) which show how neighbor sets can differ 

drastically based on the choice of θ.

In most applications, θ is unknown, precluding the use of these newly defined neighbor sets 

Nθ (si, tj) to construct the DNNGP. We propose a simple intuitive method to construct 

neighbor sets. We choose m to be a perfect square and construct a simple neighbor set of 

size m using m spatial nearest neighbors and m temporal nearest neighbors. Figure 2(c) 

illustrates the simple neighbor set of size m = 9 for the red point. In order to formally define 

the simple neighbor sets, we denote S = {s1, s2, …, sN}, Si = {s1, s2, …, si−1} and T = {t1, t2, 

…, tM}. Furthermore, for any finite set of spatial locations V ⊆ S, let A(s,V,m) denote the 
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set of m nearest spatial neighbors in V for the location s. For any point (si, tj) ∈ ℛ, we 

define the simple neighbor sets

N(si, t j) = ∪
k = 1
m − 1 (s, t j − k) ∣ s ∈ A(si, S, m) ∪ (s, t j) ∣ s ∈ A(si, Si, m) . (4.1)

The above construction implies that the neighbor set for any point in ℛ consists of m
spatial nearest neighbors of the preceding m time points. For arbitrary (s, t) ∉ ℛ, N(s, t) is 

simply defined as the Cartesian product of m nearest neighbors for s in  with m nearest 

neighbors of t in .

In many applications, one desirable property of the spatio-temporal covariance functions is 

natural monotonicity, that is, C(h, u) is decreasing in h for fixed u and decreasing in u for 

fixed h. All Matèrn-based space–time separable covariances and many nonseparable classes 

of covariance functions possess this property [Omidi and Mohammadzadeh (2015), Stein 

(2013)]. If C(·, ·|θ) possesses natural monotonicity, then N(si, tj) defined in equation (4.1) is 

guaranteed to contain at least m − 1 nearest neighbors of (si, tj) in H(si, tj). Thus, the 

neighbor sets defined above do not depend on any parameter and, for any value of θ, will 

contain a few nearest neighbors.

4.2. Adaptive neighbor selection

The simple neighbor selection scheme described in Section 4.1 does not depend on θ and is 

undoubtedly useful for fast implementation of the DNNGP. However, for some values of θ, 

the neighbor sets may often consist of very few nearest neighbors. This issue is illustrated in 

Figure 2 where the simple neighbor set (blue points) contained 7 out of 9 true nearest 

neighbors (green points) for θ = 1, but only 3 out of 9 true nearest neighbors for θ = 2. We 

see that for different choices of the covariance parameters the simple neighbor sets contain 

different proportions of the true nearest neighbors. The problem is exacerbated in extreme 

cases with variation only along the spatial or temporal direction. In such cases, the neighbor 

sets defined in (4.1) will contain only about m nearest neighbors and m − m uncorrelated 

points.

Ideally, if θ was known, one could have simply evaluated the pairwise correlations between 

any point (si, tj) in ℛ and all points in its history set H(si, tj) to obtain Nθ (si, tj)—the set of 

m true nearest neighbors. In practice, however, we encounter a computational roadblock 

because θ is unknown and for every new value of θ in an iterative optimizer or Markov 

chain Monte Carlo sampler, we need to redo the search for the neighbor sets within the 

history sets. As the history sets are typically large, this is computationally challenging. For 

example, in Figure 2, the history set for the red point is composed of all points below the red 

horizontal line, so evaluating the pairwise correlations required for updating neighbor sets of 

all points in ℛ and n datapoints outside ℛ will use O(r2 +nr) flops at each iteration. The 

reference set ℛ is typically chosen to match the scale of the observed dataset to achieve a 

reasonable approximation of the parent GP by DNNGP. Hence, for large datasets this 

updating becomes a deterrent. In fact, Vecchia (1988) and Stein, Chi and Welty (2004) admit 
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that this challenge has inhibited the use of correlation-based neighbor sets in a spatial 

setting. Jones and Zhang (1997) permitted locations within a small prefixed temporal lag of 

a given location to be eligible for neighbors. However, this assumption will fail to capture 

any long-term temporal dependence present in the datasets.

We now provide an algorithm that efficiently updates the neighbor sets after every update of 

θ. The underlying idea is to restrict the search for the neighbor sets to carefully constructed 

small subsets of the history sets. These small eligible sets E(si, tj) are constructed in such a 

manner that, despite being much smaller than the history sets, they are guaranteed to contain 

the true nearest neighbor sets Nθ (si, tj) for all choices of the parameter θ. So, for each θ we 

can evaluate the pairwise correlations between (si, tj) and only the points in E(si, tj) and still 

find the true set of m-nearest neighbors.

Figure 3(a) and 3(b) illustrates how to determine which points belong to E(si, tj). Let h and u 
denote the spatial and temporal lags with the black point and the red point in Figure 3(a). All 

other points in the black rectangle have spatial lag ≤ h and temporal lag ≤ u with the red 

point. So if the covariance function C(h, u|θ) possess natural monotonicity, the black point 

has the lowest correlation with the red point among all the points in the black rectangle. For 

the black point to be in the set of m nearest neighbors Nθ (si, tj) for any θ, all other points in 

the black rectangle should also be included. Since this is not possible as the black rectangle 

contains 12 points and m = 9, the black point becomes ineligible. By a similar logic, the blue 

rectangle in Figure 3(b) contains 8(< m) points and is included in E(si, tj). Proceeding like 

this, we can easily determine the entire eligible set [Figure 3(c)] without any knowledge of 

the parameter θ.

A formal construction of eligible sets is provided in Section S1 of the supplemental article 

Datta et al. (2016b). Proposition S1 proves that eligible sets are guaranteed to contain the 

neighbor sets for all choices of θ. This result has substantial consequences because the size 

of the eligible sets is approximately equal to 4m. The eligible sets need to be calculated only 

once before the MCMC as they are free of any parameter choices. Subsequently, for every 

new update of θ in a MCMC sampler or an iterative solver, one can search for a new set of 

m-nearest neighbors Nθ (si, tj) only within the eligible sets and use Nθ (si, tj) as the 

conditioning sets to construct the DNNGP. We summarize the MCMC steps of the DNNGP 

with adaptive neighbor selection in Algorithm 1.

As the size of the sets are approximately 4m, for every (si, tj) we need to evaluate only 4m 
pairwise correlations. So the total computational complexity of the search is now reduced to 

O(4m(n + r)) from O(nr + r2). This is at par with the scale of implementing the remainder of 

the algorithm. With this adaptive neighbor selection scheme we gain the advantage of 

selecting the set of m-nearest neighbors at every update while retaining the scalability of the 

DNNGP. Parallel computing resources, if available, can be greatly utilized to further reduce 

computations, as the search for eligible sets for each point [Algorithm 1: Step (c)] can 

proceed independently of one another.

DATTA et al. Page 11

Ann Appl Stat. Author manuscript; available in PMC 2018 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

Algorithm for adaptive neighbor selection in dynamic NNGP

1: Compute the eligible sets E(si, tj) for all (si, tj) in ℛ from equation (S1).

2: At the lth iteration of the MCMC:

1 Calculate C((s, t), (si, tj)|θ(l)) for all (s, t) in E(si, tj).

2 Define Nθ (si, tj)(l) as the set of m locations in E(si, tj) which maximizes C((s, t), (si, tj)|θ(l)).

3 Repeat steps (a) and (b) for all (si, tj) in ℛ.

4 Update θ(l+1) based on the new set of neighbor sets computed in step (c) using the Metropolis step 
specified in (5.5).

3: Repeat Step 2 for N MCMC iterations.

5. Bayesian DNNGP model

We consider a spatio-temporal dataset observed at locations s1, s2, …, sN and at time points 

t1, t2, …, tM. Note that there may not be data for all locations at all time points, that is, we 

allow missing data. Let {ℓ1, ℓ2, …, ℓn} be an enumeration of n = MN points in ℒ, where each 

ℓi is an ordered pair (sj, tk). Let y(ℓi) be a univariate response corresponding to ℓi and let x(ℓi) 
be a corresponding p × 1 vector of spatio-temporally referenced predictors. A spatio-

temporal regression model relates the response and the predictors as

y(ℓi) = x′(ℓi)β + w(ℓi) + ε(ℓi), i = 1, 2, …, MN, (5.1)

where β denotes the coefficient vector for the predictors, w(ℓi) is the spatio-temporally 

varying intercept and ε(ℓi) is the random noise customarily assumed to be independent and 

identically distributed copies from N(0, τ2).

Usually w(ℓi)’s are modeled as realizations of a spatio-temporal GP. To ensure scalability, we 

will construct a DNNGP from a parent GP with a nonseparable spatio-temporal isotropic 

covariance function C((s+h, t+u), (s, t)|θ), introduced by Gneiting (2002),

σ2

2ν − 1Γ(v)(a ∣ u ∣2α + 1)δ + κ × c‖h‖
(a ∣ u ∣2α + 1)κ /2

v

× Kv
c‖h‖

(a ∣ u ∣2α + 1)κ /2 , (5.2)

where h and u refer to the spatial and temporal lags between (s+h, t+u) and (s, t) and θ = 

{σ2,α, κ, δ, ν, a, c}. The spatial covariance function at temporal lag zero corresponds to the 

Whittle–Matern class with marginal variance σ2, smoothness parameter ν and decay 

parameter c. The parameters α and a control smoothness and decay, respectively, for the 

temporal process, while κ captures nonseparability between space and time.
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A straightforward choice of the reference set ℛ is the set {ℓ1, ℓ2, …, ℓn}. While this set will 

typically be large, its size does not adversely affect the computations. This choice has been 

shown to yield excellent approximations to the parent random field [Stein, Chi and Welty 

(2004), Vecchia (1988)]. Also, while several alternate choices of reference sets (like 

choosing the points over a regular grid) are possible, it is unlikely they will provide any 

additional computational or inferential benefits; this has been demonstrated in purely spatial 

contexts by Datta et al. (2016a). Hence, we choose ℛ= {ℓ1, ℓ2, …, ℓn}, that is, ℓi
∗ = ℓi for i = 

1, 2, …, n.

A full hierarchical model with a DNNGP prior on w(ℓ) is given by

p(θ) × IG(τ2 ∣ aτ, bτ) × N(β ∣ μβ, Vβ) × N(wℛ ∣ 0, C∼ℛ, ℛ)

× ∏
i = 1

n
N(y(ℓi) ∣ x(ℓi)′β + w(ℓi), τ2),

(5.3)

where p(θ) is the prior on θ, and IG(τ2|aτ, bτ) denotes the inverse-Gamma density with 

shape aτ and rate bτ. Below we describe an efficient MCMC algorithm using Gibbs and 

Metropolis steps only to carry out full inference from the posterior in equation (5.3).

5.1. Gibbs’ sampler steps

Let So be the points in ℛ where the y(ℓi)’s are observed and let I(ℓi) denote the binary 

indicator for presence or absence of data at ℓi. Let y be the no × 1 vector formed by stacking 

the responses observed and X be the corresponding no × p design matrix. The full 

conditional distribution of β is N(Vβ
∗ μβ

∗, Vβ
∗), where Vβ

∗ = (Vβ
−1 + X′X/τ2)−1

 and 

μβ
∗ = (Vβ

−1μβ + X′(y − wSo
)/τ2). The full conditional distribution of τ2 follows 

IG(aτ +
no
2 , bτ + 1

2(y − Xβ − wSo
)′(y − Xβ − wSo

)).

We update the elements of wℛ sequentially. For any two locations ℓ1 and ℓ2 in ℒ, if ℓ1 ∈ N(ℓ2) 

and is the j th member of N(ℓ2), then we define bℓ2,ℓ1 as the j th entry of aN(ℓ2). Let U(ℓ1) = {ℓ2 

∈ ℛ|ℓ1 ∈ N(ℓ2)} and for every ℓ2 ∈ U(ℓ1), define aℓ2,ℓ1 = w(ℓ2)−Σℓ∈N(ℓ2),ℓ ≠ℓ1 w(ℓ)bℓ2,ℓ. Then, for i 
= 1, 2, …, n, the full conditional distribution for w(ℓi) is N(v(ℓi)μ(ℓi), v(ℓi)), where

v(ℓi) =
I(ℓi)

τ2 + 1
f ℓi

+ ∑
ℓ ∈ U(ℓi)

bℓ, ℓi
2

f ℓ

−1

and

μ(ℓi) =
y(ℓi) − x(ℓi)′β

τ2 I(ℓi) +
aN(ℓi)
′ wN(ℓi)

f ℓi

+ ∑
ℓ ∈ U(ℓi)

bℓ, ℓi
aℓ, ℓi

f ℓ
.

(5.4)
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If U(ℓi) is empty for some ℓi, then all instances of Σℓ∈U(ℓi) in (5.4) disappear for that w(ℓi).

5.2. Metropolis step

We update θ using a random walk Metropolis step. The full conditional for θ is proportional 

to

p(θ)p(wℛ ∣ θ) ∝ p(θ) × ∏
i = 1

n
N(w(ℓi) ∣ aN(ℓi)

′ wN(ℓi)
, f ℓi

) . (5.5)

Since none of the above updates involve expensive matrix decompositions, the likelihood 

can be evaluated very efficiently. The algorithm for updating the parameters of a hierarchical 

DNNGP model is analogous to the corresponding updates for a purely spatial NNGP model 

[see Datta et al. (2016a)]. The only additional computational burden stems from updating the 

neighbor sets in the adaptive neighbor selection scheme, but even this can be handled 

efficiently using eligible sets (Algorithm 1). Hence, the number of floating point operations 

per update is linear in the number of points in ℒ.

5.3. Prediction

Once we have computed the posterior samples of the model parameters and the spatio-

temporal random effects over ℛ, we can execute, cheaply and efficiently, full posterior 

predictive inference at unobserved locations and time points. The Gibbs’ sampler in Section 

5.1 generates full posterior distributions of the w’s at all locations in ℛ. Let ℓi
∗ denote a 

point in ℛ where the response is unobserved, that is, I(ℓi
∗) = 0. We already have posterior 

distributions of w(ℓi
∗) and the parameters. We can now generate posterior samples of y(ℓi

∗)

from N(x(ℓi
∗)′β + w(ℓi

∗), τ2). Turning to prediction at a location ℓ outside ℛ, we construct N(ℓ) 

from E(ℓ) described in equation (S2) for every posterior sample of θ. We generate posterior 

samples of w(ℓ) from N(aN(ℓ)′ wN(ℓ), f ℓ) and, subsequently, draw posterior samples of y(ℓ) 

from N(x(ℓ)′β +w(ℓ), τ2).

6. Synthetic data analyses

In this section we compare the DNNGP, the full-rank GP and the low-rank Gaussian 

Predictive Process [Banerjee et al. (2008)]. Additional simulation experiments comparing 

the predictive performance of DNNGP with Local Approximation GP [Gramacy and Apley 

(2015)] are provided in Section S2 of the supplemental article Datta et al. (2016b). We 

generated observations over a n = 15×15×15 = 3375 grid within a unit cube domain. An 

additional 500 observations used for out-of-sample prediction validation were also located 

within the domain. All data were generated using model 5.1 with x(ℓ) comprising an 

intercept and covariate drawn from N(0, 1). The spatial covariance matrix C(θ) was 

constructed using an exponential form of the nonseparable spatio-temporal covariance 

function (5.2), viz,
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σ2

(a ∣ u ∣2 + 1)κ exp −c‖h‖
(a ∣ u ∣2 + 1)κ /2 , (6.1)

where u = |ti − tj | and h = ||si − sj || are the time and space Euclidean norms, respectively. By 

specifying different values of the decay and interaction parameters in θ = (σ2, κ, a, c), we 

generated three datasets that exhibited different covariance structures. The first column in 

Table 1 provides the three specifications for θ and Figure 4 shows the corresponding space–

time correlation surface realizations. As illustrated in Figure 4, the three datasets exhibit the 

following: (1) short spatial range and long temporal range, (2) long spatial and temporal 

range, and (3) long spatial range and short temporal range.

For each dataset, model parameters were estimated using the following: (i) full Gaussian 

Process (GP), (ii) DNNGP with simple neighbor set selection (Simple DNNGP) described in 

Section 4.1, (iii) DNNGP with adaptive neighbor set selection (Adaptive DNNGP) described 

in Section 4.2, and; (iv) bias-corrected Gaussian Predictive Process (GPP) detailed in 

Banerjee et al. (2008) and Finley, Banerjee and McRoberts (2009). DNNGP models were fit 

using m = {16, 25, 36} and the Gaussian Predictive Process model used a regularly spaced 

grid of 8×8×8 = 512 knots within the domain.

For all models, the intercept β0 and slope regression parameters, β1, were assigned flat prior 

distributions. The variance parameters were assumed to follow inverse-Gamma prior 

distributions with σ2 ~ IG(2, 1) and τ2 ~ IG(2, 0.1). The time and space decay parameters 

received uniform priors that were dataset-specific: (1) a ~ U(1, 100), c ~ U(0, 50); (2) a ~ 

U(300, 700), c ~ U(0, 10); and (3) a ~ U(1000, 3000), c ~ U(0, 10). The prior for the 

interaction term matched its theoretical support with κ ~ U(0, 1).

Candidate model comparison was based on parameter estimates, fit to the observed data, 

out-of-sample prediction accuracy and posterior predictive distribution coverage. Goodness 

of fit was assessed using DIC [Spiegelhalter et al. (2002)] and posterior predictive loss 

[Gelfand and Ghosh (1998)]. The DIC is reported along with an estimate of model 

complexity, pD, while the posterior predictive loss is computed as D = G + P, where G is a 

goodness-of-fit measure and P measures the number of model parameters. Predictive 

accuracy for the 500 holdout locations was measured using root mean squared prediction 

error [Yeniay and Göktaş (2002)]. The percent of holdout locations that fell within the 

candidate models’ posterior predictive distribution’s 95% credible interval (CI) was also 

computed. Inference was based on 15,000 MCMC samples comprising post burn-in samples 

from three chains of 25,000 iterations (i.e., 5000 samples from each chain).

Table 1 presents parameter estimation and model assessment metrics. With the exception of 

τ2 for Dataset 1, the full GP model recovered the parameter values used to generate the 

datasets, that is, the 95% CIs cover the true parameter values. For the DNNGP models, there 

was negligible difference among parameter estimates for the 15, 25 and 36 neighbor sets. 

Hence, we report only the m = 25 cases. There was very little difference between the 

estimates produced by the Adaptive and Simple DNNGP models and, like the full GP 
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model, they captured the true mean and process parameters, with the exception of τ2 for 

Dataset 1. Given the extremes in the space and time decay in Datasets 1 and 3, we 

anticipated the Simple DNNGP model—with at most 5 neighbors in any given time point—

would not be able to estimate the covariance parameters. Extensive analysis of simulated 

data, some of which is reported in Table 1, suggested the Simple DNNGP model performed 

as well as the Adaptive DNNGP and full GP models. Goodness-of-fit and out-of-sample 

prediction validation metrics in Table 1 also show the full GP and DNNGP models provided 

comparable results. In contrast, the GPP model did not capture many of the process 

parameters and provided worse fit and prediction than the GP and DNNGP models. The 

quality of the GPP results would improve with additional knots. However, computing time 

would also increase. The last row in Table 1 provides the CPU time required for each 

candidate model to generate 25,000 MCMC samples for the n = 3375 observations. Even 

with the substantial dimension reduction, the GPP model required about twice the CPU time 

as the DNNGP models. Compared to the full GP model, the DNNGP models provided 

substantial computational advantages while delivering comparable results.

7. Analysis of airbase and LOTOS-EUROS CTM data

We consider the model in equation (5.3), where y(ℓi) is a square-root transformed 

measurement of PM10 at space–time coordinate ℓi and x(ℓi) is the coinciding square-root 

transformed output from the LOTOS-EUROS CTM. Given the large dimension of the 

dataset, n = N × M = 308 × 730 = 224,840, the spatio-temporal random effects were 

modeled as a DNNGP prior derived from a zero-centered GP with the nonseparable spatio-

temporal covariance function (6.1). Exploratory analysis—consisting of semivariogram plots 

and autocorrelation function plots for simple ordinary least square model residuals—helped 

guide choice of prior and hyper-parameters for the variance and decay parameters. 

Specifically, σ2 ~ IG(2, 1), τ2 ~ IG(2, 0.1), a ~ U (0.1, 5) and c ~ U (0.01, 0.5), with κ fixed 

at 0.5.

Candidate models included the following: (i) LOTOS-EUROS CTM, (ii) simple linear 

regression model with no spatio-temporal effects, that is, w(ℓ) = 0, and (iii) Adaptive and 

Simple DNNGP with m = {16, 25, 36}. Following Section 6, candidate model goodness of 

fit to the observed data was assessed using DIC and GPD, whereas predictive performance 

was assessed using RMSPE and 95% posterior predictive CI coverage rate for out-of-sample 

prediction. The holdout set comprised blocks of five days per station—five days of 

continuous observations were withheld at random from each station’s 730 day time series.

Additionally, prediction using the Adaptive and Simple DNNGP models for a 25% holdout 

set selected from April 1–14, 2009, was compared with results from Hamm et al. (2015) 

who considered time invariant spatial regression models for the same two-week period and 

comparable prediction validation approach.

A subset of analysis results are given in Table 2. Parameter estimates for the model intercept 

and regression slope coefficient associated with the CTM output are consistent across the 

candidate models. For an accurate CTM it would be expected that β0 ≈ 0 and β1 ≈ 1. The 

finding that β0 > 0 and 0 < β1 < 1 corroborate previous findings that showed the CTM 
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consistently underestimates PM10 [Hamm et al. (2015), Stern et al. (2008)]. The spatial and 

temporal decay parameters differed between the Adaptive and Simple DNNGP models. 

Figure 5 provides correlation surfaces generated using posterior median values of a and c 
from the m = 36 Adaptive and Simple DNNGP models (using values given in Table 2). The 

0.05 correlation contour on these surfaces suggests the Simple model estimates a moderately 

longer spatial and temporal range, that is, ~60 km and ~33 days versus ~45 km and ~30 days 

for the Adaptive model. Within a given DNNGP neighbor selection algorithm there is only 

marginal difference between the covariance parameters estimates when comparing m of 25 

and 36. Neighbor sets of less than 25 provided consistently larger temporal decay parameter 

estimates, that is, shorter temporal correlation estimates, although even with such few 

neighbors the models seemed to produce consistent estimates of the spatial decay.

The spatial range of 45 to 60 km is an order of magnitude less than that observed by Hamm 

et al. (2015), who estimated median spatial ranges of 500 to 1500 km. This is attributed to 

the inclusion of temporal correlation in the model, which itself accounts for a large amount 

of the residual spatial structure. The temporal range is physically reasonable considering the 

life-time of PM10 is in the order of days and its variability is driven by alternating synoptic 

meteorological conditions, with certain conditions usually lasting for several days to weeks.

Across all candidate models the Adaptive with m = 25 provided the lowest values of DIC 

and D, suggesting improved fit to the observed data. This improved fit did not correspond to 

increased out-of-sample prediction accuracy, but rather RMSPE consistently decreased with 

the increasing number of neighbors within the Adaptive and Simple model sets. The smallest 

RMSPE was achieved using the simple neighbor selection with m = 36. All models achieved 

reasonable coverage rates.

Figure 6 illustrates the observed and candidate model fitted/predicted PM10 for three 

stations. These figures are representative of other stations and show (i) the downward bias in 

CTM output, (ii) improved fit and prediction with the addition of spatio-temporal random 

effects over nonspatial regression, and (iii) appropriate widening of CIs for missing station 

observations.

Table 3 provides out-of-sample prediction validation metrics for the nonspace–time and 

DNNGP Adaptive and Simple models that can be compared with April 1–14, 2009, holdout 

validation metrics presented in Hamm et al. (2015), Table 1. Compared to the time invariant 

(day-specific) space-varying intercept (SVI) and space-varying coefficients (SVC) models 

considered in Hamm et al. (2015), the DNNGP models’ RMSPE and bias are lower (more 

accurate, less biased), while the R2 values are comparable. We also added results for the 

simple linear regression (SLR) model in the first column of Table 3. The simple linear 

regression model does not consider spatio-temporal effects, nor does it consider a time-

varying intercept [unlike the day-specific results presented in Hamm et al. (2015)], which 

may explain the poor predictive performance—it is more meaningful to compare the 

DNNGP model prediction metrics to the day-specific metrics presented in Hamm et al. 

(2015).
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In addition to these prediction metrics, maps of posterior predictive summaries at CTM 

output locations are key inputs to pollution monitoring and mitigation programs. For 

example, Figure 7 provides maps of the posterior predictive median and the probability of 

exceeding the 50 μg m−3 regulatory threshold for two example dates. These dates were also 

examined in Hamm et al. (2015), Figure 8 and the resulting maps are directly comparable. 

The DNNGP, Figure 7 and the SVC maps in Hamm et al. (2015) show broadly similar 

patterns, although there are some differences. For example, the high pollution over western 

France and northern Spain on April 3, 2009, is captured more clearly by Hamm et al. (2015). 

The SVI and SVC models in Hamm et al. (2015) did not account for temporal correlation 

over days—clearly not an accurate assumption. In contrast, the DNNGP models smooth over 

days, which can provide improved predictive performance although the details of highly 

dynamic events may be less well captured than by the daily specific models used in Hamm 

et al. (2015).

The last row in Table 2 provides the CPU time for delivering 25,000 MCMC iterations. As 

detailed in Section 4.2, particular components of the algorithm are easily distributed across 

multiple CPUs. In particular, partitioning the update of w(ℓi)’s across multiple CPUs yields 

substantial computational gains. The DNNGP samplers were implemented in C++ and 

leveraged OpenMP [Dagum and Menon (1998)] and Intel Math Kernel Library’s (MKL) 

threaded BLAS and LAPACK routines for the matrix [Intel (2015)]. Running on a single 

CPU, the Adaptive m = 25 model would require approximately 260 hours. However, when 

distributed across a 10-core Xeon CPU, the total run time was approximately 24 hours.

8. Conclusion

We have addressed the problem of modeling large spatio-temporal datasets, specifically for 

settings where full inference (with proper accounting for uncertainty) is required at arbitrary 

resolutions. We presented a new class of dynamic nearest neighbor Gaussian Process 

(DNNGP) models over a continuous space–time domain. The DNNGP is a legitimate 

Gaussian process whose realizations over finite sets enjoy sparse precision matrices, thereby 

accruing massive computational savings in terms of storage and flops. The DNNGP depends 

upon the conditional independence of the random effects given its neighbors. We used the 

strength of a correlation function to construct a parametric distance metric in a spatio-

temporal domain. Using monotonicity of covariance functions, we showed that it is possible 

to update neighbor sets using a scalable search algorithm and outlined the steps of a Gibbs’ 

sampler that avoids expensive matrix decompositions and is linear in the number of 

measurements in terms of storage and flops.

Analyses combining European CTM outputs and observed data has, to date, focused mainly 

on spatial analysis per day [Denby et al. (2008, 2010), Hamm et al. (2015)]; few studies 

implement full space–time geostatistical models, for example, Gräler, Gerharz and Pebesma 

(2011), and none consider such a long time series. The work presented in this paper focuses 

on DNNGP development to facilitate novel analyses of spatially indexed time series data 

such as PM10 concentrations. Here, in addition to improved predictive performance, 

inference on model covariance parameters provided insight into space–time structures not 

captured by the LOTOS-EUROS CTM. While previous analyses of individual days had 
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shown strong residual spatial structure, analysis of this long time series with explicit time 

correlation parameters reveals the residual temporal structure dominates. The temporal range 

is physically reasonable considering the lifetime of PM10 is in the order of days and its 

variability is driven by alternating synoptic meteorological conditions with certain 

conditions usually lasting for several days to weeks.

Reproducing the observed variability with a CTM remains challenging, especially for 

episodic conditions which are associated with particular (stagnant) meteorological 

conditions or occasional large emissions from, for example, large wild fires [R’Honi et al. 

(2013)] or dust events [Birmili et al. (2008)]. A particular issue to be resolved is the lack of 

detail in the anthropogenic emission variability. This variability is prescribed using static 

emission profiles for the month of the year, day of the week and hour of the day. Further 

detailing through inclusion of meteorological effects may improve the modeling [Mues et al. 

(2014)] and remove the monthly signature found in this analysis.

The type of analysis that is performed depends on the study objective. Analysis of individual 

days is important for the study of individual air pollution events and the associated 

performance of the CTM [Hamm et al. (2015)]. The analysis presented in this paper affords 

a different perspective by identifying long-term space–time structures that offer insight into 

the performance of the CTM. The DNNGP also yields more accurate predictions than 

previous studies of these same data.

Apart from massive scalability, the DNNGP retains the versatility of process-based 

modeling and can be used as a sparsity-inducing proper prior in any Bayesian hierarchical 

model designed to deliver full inference at arbitrary spatio-temporal resolutions for massive 

spatio-temporal datasets. We have developed DNNGP assuming an isotropic nonstationary 

spatio-temporal covariance structure. However, it can also be potentially extended to certain 

classes of nonstationary space–time covariances [see Section S3 of the supplemental article 

Datta et al. (2016b)]. Even more generally, the DNNGP can be used for any spatio-temporal 

random effect in the second stage of specification in hierarchical models for non-Gaussian 

responses. Full posterior distributions for the underlying spatio-temporal process are 

available at any arbitrary location and time point. Thus, DNNGP can potentially be deployed 

for statistical downscaling of spatio-temporal datasets obtained at coarser resolutions (e.g., 

climate downscaling). We also plan to migrate our lower level C++ code into the spBayes R 

package for wider and friendlier accessibility to DNNGP models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Observed PM10 μg m−3 for two example dates.
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Fig. 2. 
True and simple neighbor sets for a 12×12 spatio-temporal dataset with one-dimensional 

spatial domain and covariance function C((s1, t1), (s2, t2)|θ) = exp(−|s1 − s2|2 − θ|t1 − t2|2). 

All points below the red horizontal line constitute the history set for the red point (si, tj). 
Green points denote Nθ(si, tj)—the sets of m(= 9) true nearest neighbors with θ = 1 [figure 

(a)] and θ = 2 [figure (b)]. The blue points in figure (c) denote the simple neighbor set.
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Fig. 3. 
Construction of eligible sets for finding nearest neighbor sets of size m = 9: In figure (a) the 

black point is ineligible because the black rectangle contains more than m = 9 points. In 

figure (b) the blue point will belong to E(si, tj) as the blue rectangle contains less than m = 9 

points. Figure (c) shows the final eligible set obtained by repeating this algorithm for all 

points in the history set (below the red line).
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Fig. 4. 
Space–time correlation surface realizations given true parameter values in Table 1. 

Correlation contours are provided, with the two outer white lines corresponding to 0.05 and 

0.01.
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Fig. 5. 
Space–time correlation posterior distribution median surfaces. Median (white lines) and 

associated 95% credible intervals (dotted white lines) for correlation contours of 0.05.
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Fig. 6. 
Fitted and observed PM10 for several example stations. Lines correspond to PM10 observed 

(black), CTM output (red), nonspace–time, regression (orange), and m = 36 Adaptive 

DNNGP (blue) with associated 95% CI band (gray). Prediction assessment holdout and 

actual missing observations are indicated with green and black points, respectively.
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Fig. 7. 
Predicted PM10 and probability of exceeding 50 μg m−3 for two example dates.
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